Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds

نویسندگان

چکیده

For $$n \ge 2$$ , we prove that a finite volume complex hyperbolic n-manifold containing infinitely many maximal properly immersed totally geodesic submanifolds of real dimension at least two is arithmetic, paralleling our previous work for manifolds. As in the case, primary result superrigidity theorem certain representations lattices. The proof requires developing new general tools not needed case. Our main results also have number other applications. example, nonexistence maps between manifolds, which related to question Siu, 3-manifolds cannot be and arithmeticity manifolds detected purely by topology underlying variety, Margulis. provide some evidence conjecture Klingler broad generalization Zilber–Pink conjecture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally geodesic submanifolds of the complex quadric

In this article, relations between the root space decomposition of a Riemannian symmetric space of compact type and the root space decompositions of its totally geodesic submanifolds (symmetric subspaces) are described. These relations provide an approach to the classification of totally geodesic submanifolds in Riemannian symmetric spaces. In this way a classification of the totally geodesic s...

متن کامل

Totally Geodesic Submanifolds of Teichmüller Space

Main results. Let Tg,n andMg,n denote the Teichmüller and moduli space respectively of genus g Riemann surfaces with n marked points. The Teichmüller metric on these spaces is a natural Finsler metric that quantifies the failure of two different Riemann surfaces to be conformally equivalent. It is equal to the Kobayashi metric [Roy74], and hence reflects the intrinsic complex geometry of these ...

متن کامل

Totally geodesic submanifolds in Riemannian symmetric spaces

In the first part of this expository article, the most important constructions and classification results concerning totally geodesic submanifolds in Riemannian symmetric spaces are summarized. In the second part, I describe the results of my classification of the totally geodesic submanifolds in the Riemannian symmetric spaces of rank 2. To appear in the Proceedings volume for the conference V...

متن کامل

Geodesic Lightlike Submanifolds of Indefinite Sasakian Manifolds

In this paper, we study geodesic contact CR-lightlike submanifolds and geodesic screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds. Some necessary and sufficient conditions for totally geodesic, mixed geodesic, D -geodesic and -geodesic contact CR-lightlike submanifolds and SCR submanifolds are obtained. D

متن کامل

Arithmeticity of complex hyperbolic triangle groups

Complex hyperbolic triangle groups, originally studied by Mostow in building the first nonarithmetic lattices in PU(2, 1), are a natural generalization of the classical triangle groups. A theorem of Takeuchi states that there are only finitely many Fuchsian triangle groups that determine an arithmetic lattice in PSL2(R), so triangle groups are generically nonarithmetic. We prove similar finiten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2023

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-023-01186-5